Perturbation of Eigenvalues of Matrix Pencils and Optimal Assignment Problem

نویسنده

  • MARIANNE AKIAN
چکیده

We consider a matrix pencil whose coefficients depend on a positive parameter ǫ, and have asymptotic equivalents of the form aǫ when ǫ goes to zero, where the leading coefficient a is complex, and the leading exponent A is real. We show that the asymptotic equivalent of every eigenvalue of the pencil can be determined generically from the asymptotic equivalents of the coefficients of the pencil. The generic leading exponents of the eigenvalues are the “eigenvalues” of a min-plus matrix pencil. The leading coefficients of the eigenvalues are the eigenvalues of auxiliary matrix pencils, constructed from certain optimal assignment problems. Perturbation de valeurs propres de faisceaux matriciels et problème d’affectation optimale Résumé.Nous considérons un faisceau matriciel dont les coefficients, dépendant d’un paramètre ǫ, ont des équivalents asymptotiques de la forme aǫ, lorsque ǫ tend vers zéro par valeurs positives, le coefficient dominant a étant complexe et l’exposant dominant A étant réel. Nous montrons qu’un équivalent asymptotique pour chacune des valeurs propres du faisceau peut être déterminé génériquement à partir des équivalents des coefficients du faisceau. Les exposants dominants des valeurs propres sont les valeurs propres d’un faisceau matriciel min-plus, et les coefficients dominants sont les valeurs propres de faisceaux auxiliaires, construits au moyen de problèmes d’affectation optimale. Abridged French version Nous considérons un faisceau matriciel Aǫ = Aǫ,0 + XAǫ,1 + · · · + X Aǫ,d, où X est une indéterminée, et où pour tout 0 ≤ k ≤ d, Aǫ,k est une matrice n × n dont les coefficients, (Aǫ,k)ij , sont des fonctions continues à valeurs complexes d’un paramètre positif ǫ. On s’intéresse au comportement asymptotique, lorsque ǫ tend vers 0, des valeurs propres Lǫ de Aǫ, qui sont par définition les racines du polynôme det(Aǫ). Nous supposons que pour tout 0 ≤ k ≤ d, on a des matrices ak = ((ak)ij) ∈ C n×n et Ak = ((Ak)ij) ∈ (R ∪ {+∞}) n×n telles que (Aǫ,k)ij = (ak)ijǫ (Ak)ij + o(ǫkij ), pour 1 ≤ i, j ≤ n. Lorsque (Ak)ij = +∞, cela signifie, par convention, que (Aǫ,k)ij est nulle au voisinage de 0. Nous cherchons un équivalent Date: February 23, 2004. 2000 Mathematics Subject Classification. Primary 47A55. Secondary 47A75, 15A22, 05C50, 12K10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the determination of eigenvalues for differential pencils with the turning point

In this paper, we investigatethe boundary value problem for differential pencils on the half-linewith a turning point. Using a fundamental system of solutions, wegive a asymptotic distribution of eigenvalues.

متن کامل

Perturbation Theory for Rectangular Matrix Pencils Perturbation Theory for Rectangular Matrix Pencils

abstract The theory of eigenvalues and eigenvectors of rectangular matrix pencils is complicated by the fact that arbitrarily small perturbations of the pencil can cause them disappear. However, there are applications in which the properties of the pencil ensure the existence of eigen-values and eigenvectors. In this paper it is shown how to develop a perturbation theory for such pencils. ABSTR...

متن کامل

Pole Assignment Of Linear Discrete-Time Periodic Systems In Specified Discs Through State Feedback

The problem of pole assignment, also known as an eigenvalue assignment, in linear discrete-time periodic systems in discs was solved by a novel method which employs elementary similarity operations. The former methods tried to assign the points inside the unit circle while preserving the stability of the discrete time periodic system. Nevertheless, now we can obtain the location of eigenvalues ...

متن کامل

Homotopy perturbation method for eigenvalues of non-definite Sturm-Liouville problem

In this paper, we consider the application of the homotopy perturbation method (HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is called non-definite SLP. Two important Examples show that HPM is reliable method for computing the eigenvalues of SLP.

متن کامل

The distance to instability and singularity for structured matrix pencils

The stability analysis of dynamical systems leads to the eigenstructure analysis of matrix pencils λE−A. The associated system is asymptotically stable if the pencil is regular, all finite eigenvalues are in the left half plane and the infinite eigenvalues are semisimple. There are several challenging open problems that will be discussed. The first is the distance to instability, i.e. the small...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008